
Format Strings

Announcements

- DiceCTF TOMORROW
- Be there!
- Let’s be top 3
- There will be pizza

- TracerFire March 5 and 6
- Form to sign up in #announcements

Meeting Flag

sigpwny{printf(user_input)}

Overview

- Format string review

- Example bad program

- Arbitrary read

- Arbitrary write

Overview

- printf("hello world"); // prints hello world

- printf("%d", 123); // prints 123

- printf("%x", 0xcafebabe); // prints cafebabe

- printf("%s", "sigpwny"); // prints sigpwny

- printf("%3$d", 123, 456, 789); // prints 789

Correct program

int main() {

 char buf[32];

// put user input in buf

 printf("%s", buf);

}

Vulnerable program

int main() {

 char buf[32];

// put user input in buf

 printf(buf);

}

Vulnerable program

- What if user input is %x?

- What if user input is %s?

int main() {

 char buf[32];

// put user input in buf

 printf(buf);

}

printf stack (kind of)

Address of buf

First printf argument (123)

Second printf argument (456)

Other stack call stuff to set up printf

%d%d

printf pointer —>

buf —>

Lower address

Higher address
int main() {

 printf("%d%d", 123, 456);

}

printf stack (kind of)

Address of buf

Other stack call stuff to set up printf

\xBE\xBA\xFE\xCA
\xBE\xBA\xFE\xCA
%15$sAAA
AAAAAAAA

printf pointer —>

buf —>

Lower address

Higher address
int main() {

 char buf[32];

 printf(buf);

}

printf stack (kind of)

Address of buf

Other stack call stuff to set up printf

\xBE\xBA\xFE\xCA
\xBE\xBA\xFE\xCA
%15$sAAA
AAAAAAAA

printf pointer —>

Lower address

Higher address
int main() {

 char buf[32];

 printf(buf);

}

Prints the string at address
0xCAFEBABECAFEBABE!

Format String Read Recap

- Can do arbitrary memory read
1. Specify address to read at start of buf
2. Spam %x until printf pointer is at start of buf or use

direct parameter access
3. Add a %s

- Can also spam %x or %p to leak addresses
- libc addresses
- program addresses
- stack, heap

%n

- Writes the number of bytes printed so far into a pointer
- Added to printf just so we can exploit format string vulns???

int main() {

 int bytes_written = 0;

 printf("hello world\n%n", &bytes_written);

 // bytes_written is now 12

 return 0;

}

printf stack (kind of)

Address of buf

Other stack call stuff to set up printf

\xBE\xBA\xFE\xCA
\xBE\xBA\xFE\xCA
%15$nAAAA
AAAAAAAA

printf pointer —>

buf —>

Lower address

Higher address
int main() {

 char buf[32];

 printf(buf);

}

Writes 8 to address
0xCAFEBABECAFEBABE!

Exploiting arbitrary write

- Consider the format string: “(ADDRESS) (ADDRESS+1)
(ADDRESS + 2) … %150x %15$n %120x %16$n %64x %17$n

- Writes 150 to ADDRESS, then (150 + 120) % 256 to
ADDRESS + 1
- Effectively writing one byte at a time, thanks to little endian

- Hard part is getting addresses on the stack, since 64 bit
addresses have lots of \x00 bytes. If ADDRESS has \x00
bytes, then place at end of printf call and hope your
string input accepts \x00 bytes.

Exploiting arbitrary write

- Overwrite function pointers
- Function pointers might be in some struct somewhere you

leaked or in the GOT if writable

- Point that to a win function, some shellcode, or a one gadget

Next Meetings

This Sunday:
- DiceCTF!

Next Thursday:
- Log4j with Minh

